Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xu-Jie Shen, ${ }^{\text {a }}$ Hui-Lan Chen, ${ }^{\text {a }}$ * Chun-Ying Duan ${ }^{b}$ and Yong-Jiang Liu ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\mathbf{b}}$ Coordination Chemistry Institute and State Key Laboratory of Coordination
Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: hlchen@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
Disorder in solvent or counterion
R factor $=0.066$
$w R$ factor $=0.189$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aqua(n-pentyl)[3,3'-(propane-1,3-diyldinitrilo)bis-(butan-2-one) dioximato- $\kappa^{4} N$]cobalt(III) perchlorate

The title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{11}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{ClO}_{4}$, is one of the coenzyme B_{12} models with the equatorial ligand having the same -1 formal charge as B_{12} corrin. In the complex, the Co atom has a distorted octahedral coordination, with the n-pentyl and water ligands in axial positions.

Comment

As important coenzyme B_{12} models, several Costa-type organocobalt complexes, $[L \mathrm{Co}(\mathrm{DO}-\mathrm{DOH}-\mathrm{pn}) R] X$, where $L=$ neutral base, DO-DOH-pn $=3,3^{\prime}$-(propane-1,3-diyldinitrilo)-bis(butan-2-one)dioximato, $R=$ alkyl and $X=$ anion group $\left(\mathrm{PF}_{6}{ }^{-}\right.$or ClO_{4}^{-}etc.), have been reported (Finke et al., 1983). However, only a few structures are available, especially with aqua as the axial ligand (Randaccio et al., 1989). In this report, we describe the structure of the title compound, (I), with $L=$ $\mathrm{H}_{2} \mathrm{O}, R=$ pentyl and $X=$ perchlorate.

(I)

The Co atom has a distorted octahedral coordination with the R and $\mathrm{H}_{2} \mathrm{O}$ ligands in axial positions (Fig. 1). The four equatorial N atoms of the DO-DOH-pn ligand are coplanar within $0.004 \AA$, and the Co atom is displaced by 0.025 (6) \AA from this mean plane towards the axial alkyl group. The two chemically equivalent halves of the equatorial macrocycle, with the exclusion of C6, have a dihedral angle of $6.3(7)^{\circ}$ and bend toward the aqua ligand. Compared with the complex having $R=$ hexyl, which we have previously reported (Xiang et al., 2000), the $\mathrm{Co}-\mathrm{C}$ bond length is slightly shorter. The $\mathrm{Co}-$ C bond lengths are 1.993 (5) and 2.022 (5) \AA for $R=$ pentyl and hexyl, respectively. Other bond lengths and angles agree with those in related compounds (Zagrando et al., 1987; Parker et al., 1985; Marzilli et al., 1985).

Experimental

The title compound was synthesized as described by Parker et al. (1985). A crystal suitable for X-ray diffraction was grown from an acetone-water solution in the dark under aerobic conditions.

Received 23 February 2001
Accepted 22 March 2001
Online 12 April 2001

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{11}\right)\left(\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}\right)-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{ClO}_{4}$
$M_{r}=486.84$
Monoclinic, $P 2_{1} / n$
$a=17.761$ (4) Å
$b=6.6774(13) \AA$
$c=19.173$ (4) \AA
$\beta=96.91$ (2) ${ }^{\circ}$
$V=2257.3(8) \AA^{3}$
$Z=4$
Data collection
Bruker P4 diffractometer

$$
R_{\mathrm{int}}=0.070
$$

$2 \theta / \omega$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.641, T_{\text {max }}=0.759$
5163 measured reflections
3956 independent reflections
2709 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1023 P)^{2}\right.$

$$
+2.2665 P]
$$

$w R\left(F^{2}\right)=0.189$
$S=1.04$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

3956 reflections
313 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

Co1-N1	$1.876(4)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.276(7)$
$\mathrm{Co} 1-\mathrm{N} 4$	$1.880(4)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.461(7)$
$\mathrm{Co} 1-\mathrm{N} 2$	$1.905(4)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.284(7)$
$\mathrm{Co} 1-\mathrm{N} 3$	$1.908(4)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.464(8)$
$\mathrm{Co} 1-\mathrm{C} 12$	$1.993(5)$	$\mathrm{N} 4-\mathrm{C} 10$	$1.280(7)$
$\mathrm{Co} 1-\mathrm{O} 1 W$	$2.100(3)$	$\mathrm{N} 4-\mathrm{O} 2$	$1.332(6)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.281(7)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.496(9)$
$\mathrm{N} 1-\mathrm{O} 1$	$1.327(5)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.498(9)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 4$	$97.0(2)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{C} 12$	$89.4(2)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$81.86(19)$	$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 1 W$	$87.62(16)$
$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{N} 2$	$178.32(19)$	$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{O} 1 W$	$88.50(17)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 3$	$177.65(18)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O} 1 W$	$90.19(17)$
$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{N} 3$	$81.4(2)$	$\mathrm{N} 3-\mathrm{Co} 1-\mathrm{O} 1 W$	$90.56(17)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 3$	$99.6(2)$	$\mathrm{C} 12-\mathrm{Co} 1-\mathrm{O} 1 W$	$179.6(2)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{C} 12$	$92.4(2)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6$	$111.2(5)$
$\mathrm{N} 4-\mathrm{Co} 1-\mathrm{C} 12$	$91.1(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$115.0(5)$
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{C} 12$	$90.2(2)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 6$	$111.8(5)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1W-H1WA $\cdots \mathrm{O} 11^{\mathrm{i}}$	$0.850(10)$	$2.01(2)$	$2.830(13)$	$160(4)$
O2-H2 $\cdots 1$	$0.87(17)$	$1.57(7)$	$2.441(12)$	$170(6)$
O1W-H1WB $\cdots \mathrm{O} 14$	$0.849(10)$	$1.95(18)$	$2.788(14)$	$168(6)$

[^0]

Figure 1
ORTEP drawing of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

The perchlorate anion shows an orientational disorder. The positional parameters of the O atoms were refined with $\mathrm{Cl}-\mathrm{O}$ constrained to 1.43 (1) \AA and $\mathrm{O} \cdots \mathrm{O}$ to 2.32 (2) \AA. The site-occupation factor of the $\mathrm{O} 11-\mathrm{O} 14$ atoms was refined using a free variable as 0.729 (11) and that of the $\mathrm{O} 11^{\prime}-\mathrm{O} 14^{\prime}$ atoms as 0.271 (11). The hydroxy and aqua H atoms were located from difference Fourier maps and were refined isotropically. The positional parameters of the other H atoms were calculated geometrically and were refined using a riding model.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1995); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: $S H E L X T L$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

This research was supported by the National Natural Science Foundation of China (No. 29671019).

References

Finke, R. G., Mckenna, W. P., Schiraldi, D. A., Smith, B. L. \& Pierpont, C. (1983). J. Am. Chem. Soc. 105, 7592-7604.

Marzilli, L. G., Bresciani-Pahor, N., Randaccio, L., Zagrando, E., Finke, R. G. \& Myers, S. A. (1985). Inorg. Chim. Acta, 107, 139-145.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Parker, W. O., Bresciani-Pahor, N., Zagrando, E., Randaccio, L. \& Marzilli, L. G. (1985). Inorg. Chem. 24, 3908-3913.

Randaccio, L., Bresciani-Pahor, N. \& Zagrando, E. (1989). Chem. Soc. Rev. 18, 225-250.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Siemens (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Xiang, P., Chen, Y., Shen, X.-J., Chen, H.-L. \& Duan, C.-Y. (2000). Acta Cryst. C56, 421-422.
Zagrando, E., Parker, W. O., Bresciani-Pahor, N., Thomas, L. B., Marzilli, L. G. \& Randaccio, L. (1987). Gazz. Chim. Ital. 117, 307-316.

[^0]: Symmetry code: (i) $-x, 3-y, 1-z$.

